Levelling-Up

Basic Mathematics

Powers

Robin Horan

The aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence in the use of powers.

Copyright © 2000 rhoran@plymouth.ac.uk Last Revision Date: January 16, 2001

Table of Contents

1. Powers
2. Negative Powers
3. Fractional Powers
4. Use of the Rules of Simplification
5. Quiz on Powers

Solutions to Quizzes
Solutions to Problems

1. Powers (Introduction)

If a is any number and n any positive integer (whole number) then the product of a with itself n times, $\underbrace{a \times a \times \cdots \times a}_{n}$, is called a raised to the power n, and written a^{n}, i.e.,

$$
a^{n}=\underbrace{a \times a \times \cdots \times a}_{n} .
$$

Examples 1
(a) $7^{2}=7 \times 7=49$
(b) $2^{3}=2 \times 2 \times 2=8$
(c) $3^{5}=3 \times 3 \times 3 \times 3 \times 3=243$

The following important rules apply to powers.

$$
\begin{aligned}
& 1 . \\
& a^{m} \times a^{n}=a^{m+n} \\
& \text { 2. } a^{m} \div a^{n}=a^{m-n} \\
& \text { 3. }\left(a^{m}\right)^{n}=a^{m n} \\
& 4 . \\
& a^{1} \\
& = \\
& a \\
& 5 . \\
& a^{0}=1
\end{aligned}
$$

We want these rules to be true for all positive values of a and all values of m and n. We shall first look at the simpler cases.
Examples 2
(a) $10^{2} \times 10^{3}=(10 \times 10) \times(10 \times 10 \times 10)=10^{5}=10^{2+3}$.
(b) $2^{5} \div 2^{3}=32 \div 8=4=2^{2}=2^{5-3}$.
(c) $\left(3^{2}\right)^{3}=(3 \times 3)^{3}=(3 \times 3) \times(3 \times 3) \times(3 \times 3)=3^{6}=3^{2 \times 3}$
(d) From rule $2 a^{n+1} \div a^{n}=a^{(n+1)-n}=a^{1}$. Also
(e) We have $a^{n} \times a^{0}=a^{n+0}=a^{n}=a^{n} \times 1$. Thus $a^{0}=1$.

Exercise

Simplify each of the following.

$$
\begin{array}{ll}
\text { 1. } & 2^{3} \times 2^{3} \\
\text { 2. } & 3^{15} \div 3^{12} \\
\text { 3. } & \left(10^{2}\right)^{3}
\end{array}
$$

2. Negative Powers

The question now arises as to what we mean by a negative power. To interpret this note that

$$
a^{2} \div a^{5}=\frac{a^{2}}{a^{5}}=\frac{a \times a}{a \times a \times a \times a \times a}=\frac{1}{a^{3}} .
$$

If rule 2 is to apply, then $a^{2} \div a^{5}=a^{2-5}=a^{-3}$. Thus $a^{-3}=1 / a^{3}$. The general rule is

$$
a^{-n}=1 / a^{n}
$$

Examples 3
(a) $10^{-2}=1 / 10^{2}=1 / 100$
(b) $3^{-1}=1 / 3^{1}=1 / 3$
(c) $5^{2} \div 5^{4}=5^{(2-4)}=5^{-2}=1 / 5^{2}=1 / 25$

Exercise

Write each of the following in the form a^{k}, for some number k.

$$
\begin{aligned}
& \text { 1. } 2^{3} \times 2^{-5} \\
& \text { 2. } 3^{5} \div 3^{7} \\
& \text { 3. }\left(10^{2}\right)^{-3}
\end{aligned}
$$

3. Fractional Powers

If a is a positive number, then the square root of a is the number which, multiplied by itself, gives a. Thus 3 is the square root of 9 since $3^{2}=9$. We write $3=\sqrt{9}$. Note that, by definition, $\sqrt{a} \times \sqrt{a}=a$. This gives us a way of interpreting $a^{\frac{1}{2}}$ for, by rule 1 ,

$$
a^{\frac{1}{2}} \times a^{\frac{1}{2}}=a^{\left(\frac{1}{2}+\frac{1}{2}\right)}=a^{1}=a=\sqrt{a} \times \sqrt{a}
$$

so that $a^{\frac{1}{2}}=\sqrt{a}$. The general rule is that, if a is a positive number and n is a positive integer, then

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

where $\sqrt[n]{a}$ is the n-th root of a. We can see this in general for, by rule 3 ,

$$
\left(a^{\frac{1}{n}}\right)^{n}=a^{\frac{1}{n} \times n}=a^{1}=a
$$

Examples 4

$$
\begin{aligned}
& \text { (a) } 100^{\frac{1}{2}}=\sqrt{100}=10 \\
& \text { (b) } 8^{\frac{1}{3}}=\sqrt[3]{8}=2 \\
& \text { (c) } 27^{\frac{5}{3}}=\left(27^{\frac{1}{3}}\right)^{5}=3^{5}=243
\end{aligned}
$$

In (c) we have used rule 3, i.e. $a^{\frac{m}{n}}=a^{\frac{1}{n} \times m}=\left(a^{\frac{1}{n}}\right)^{m}$, so

$$
\left(a^{\frac{1}{n}}\right)^{m}=a^{\frac{m}{n}}=\left(a^{m}\right)^{\frac{1}{n}}
$$

Quiz. To which of the following does $\left(8^{5}\right)^{\frac{1}{3}}$ simplify?
(a) 8
(b) 16
(c) 24
(d) 32

4. Use of the Rules of Simplification

In this section we shall demonstrate the use of the rules of powers to simplify more complicated expressions.
Examples 5
Simplify each of the following.

1. $\left[\left(a^{-3}\right)^{\frac{2}{3}}\right]^{\frac{1}{2}}$
2. $\left[\left(x^{-\frac{1}{4}}\right)^{8}\right]^{\frac{2}{3}}$
3. $\left(x^{\frac{1}{2}}\right)^{3} \times\left(x^{-\frac{1}{3}}\right)^{2}$,
4. $\left(\sqrt[4]{x^{3}}\right)^{\frac{2}{3}} \times\left(\sqrt[5]{x^{6}}\right)^{\frac{5}{12}}$
5. $\left(\frac{a^{2}}{b^{3}}\right)^{\frac{1}{3}} \times\left(\frac{b^{2}}{a^{3}}\right)^{\frac{1}{2}}$

5. Quiz on Powers

Begin Quiz

1. $\left(\sqrt[3]{a^{5}}\right)^{\frac{1}{2}} \times \sqrt[6]{a^{-5}}$
(a) 1
(b) a
(c) $a^{\frac{5}{12}}$
(d) $a^{\frac{5}{6}}$
2. $\left(\frac{a^{3}}{b^{2}}\right)^{\frac{1}{2}} \div\left(\frac{b^{3}}{a^{2}}\right)^{-\frac{1}{2}}$
(a) $a^{-\frac{1}{2}} b^{-\frac{1}{2}}$
(b) $a^{\frac{1}{2}} b^{-\frac{1}{2}}$
(c) $a^{-\frac{1}{2}} b^{\frac{1}{2}}$
(d) $a^{\frac{1}{2}} b^{\frac{1}{2}}$
3. $\left(\sqrt[4]{b^{3}}\right)^{\frac{1}{6}} \times \sqrt[9]{b^{-3}} \div\left(\sqrt{b^{-7}}\right)^{\frac{1}{7}}$
(a) $b^{\frac{1}{8}}$
(b) $b^{-\frac{1}{8}}$
(c) $b^{\frac{3}{8}}$
(d) $b^{-\frac{3}{8}}$

End Quiz
Score:

Solutions to Quizzes

Solution to Quiz:

Using rule 3, we have

$$
\left(8^{5}\right)^{\frac{1}{3}}=8^{\left(5 \times \frac{1}{3}\right)}=8^{\left(\frac{1}{3} \times 5\right)}=\left(8^{\frac{1}{3}}\right)^{5}=2^{5}=32 .
$$

End Quiz

Solutions to Problems

Problem 1. $2^{3} \times 2^{3}=2^{(3+3)}=2^{6}=64$

Problem 2. $3^{15} \div 3^{12}=3^{(15-12)}=3^{3}=27$

Solutions to Problems
Problem 3. $\left(10^{2}\right)^{3}=10^{(2 \times 3)}=10^{6}=1,000,000$

Problem 1. $2^{3} \times 2^{-5}=2^{(3-5)}=2^{-2}$, which is $1 / 4$.

Solutions to Problems
Problem 2. $3^{5} \div 3^{7}=3^{(5-7)}=3^{-2}$, which is $1 / 9$.

Problem 3. $\left(10^{2}\right)^{-3}=10^{(2 \times(-3))}=10^{-6}$, which is $1 / 1,000,000$.

Problem 1.
Beginning with the innermost bracket, we have, using rule 3,

$$
\left(a^{-3}\right)^{\frac{2}{3}}=a^{-3 \times \frac{2}{3}}=a^{-2} .
$$

Then

$$
\left[\left(a^{-3}\right)^{\frac{2}{3}}\right]^{\frac{1}{2}}=\left[a^{-2}\right]^{\frac{1}{2}}=a^{-2 \times \frac{1}{2}}=a^{-1}
$$

Problem 2.
Beginning again with the innermost bracket, and using rule 3, we have

$$
\left(x^{-\frac{1}{4}}\right)^{8}=x^{-\frac{1}{4} \times 8}=x^{-2} .
$$

Now if we use rule 3 again we have

$$
\left[x^{-2}\right]^{\frac{2}{3}}=x^{-2 \times \frac{2}{3}}=x^{-\frac{4}{3}} .
$$

Problem 3.
We have

$$
\left(x^{\frac{1}{2}}\right)^{3} \times\left(x^{-\frac{1}{3}}\right)^{2}=x^{\frac{3}{2}} \times x^{-\frac{2}{3}}
$$

using rule 3 . Now we may use rule 1 and

$$
x^{\frac{3}{2}} \times x^{-\frac{2}{3}}=x^{\frac{3}{2}-\frac{2}{3}}=x^{\frac{5}{6}}
$$

Problem 4.
Starting with the first term

$$
\sqrt[4]{x^{3}}=\left(x^{3}\right)^{\frac{1}{4}}=x^{\frac{3}{4}}
$$

Thus

$$
\left(\sqrt[4]{x^{3}}\right)^{\frac{2}{3}}=\left(x^{\frac{3}{4}}\right)^{\frac{2}{3}}=x^{\frac{3}{4} \times \frac{2}{3}}=x^{\frac{2}{4}}=x^{\frac{1}{2}}
$$

Similarly,

$$
\sqrt[5]{x^{6}}=\left(x^{6}\right)^{\frac{1}{5}}=x^{6 \times \frac{1}{5}}=x^{\frac{6}{5}}
$$

so that

$$
\left(\sqrt[5]{x^{6}}\right)^{\frac{5}{12}}=\left(x^{\frac{6}{5}}\right)^{\frac{5}{12}}=x^{\frac{6}{5} \times \frac{5}{12}}=x^{\frac{1}{2}}
$$

Now we have

$$
\left(\sqrt[4]{x^{3}}\right)^{\frac{2}{3}} \times\left(\sqrt[5]{x^{6}}\right)^{\frac{5}{12}}=x^{\frac{1}{2}} \times x^{\frac{1}{2}}=x^{1}=x
$$

Problem 5.
The first term simplifies as follows.

$$
\left(\frac{a^{2}}{b^{3}}\right)^{\frac{1}{3}}=\frac{\left(a^{2}\right)^{\frac{1}{3}}}{\left(b^{3}\right)^{\frac{1}{3}}}=\frac{a^{\frac{2}{3}}}{b}=a^{\frac{2}{3}} b^{-1}
$$

Treating the second term,

$$
\left(\frac{b^{2}}{a^{3}}\right)^{\frac{1}{2}}=\frac{\left(b^{2}\right)^{\frac{1}{2}}}{\left(a^{3}\right)^{\frac{1}{2}}}=\frac{b}{a^{\frac{3}{2}}}=b a^{-\frac{3}{2}} .
$$

Thus

$$
\left(\frac{a^{2}}{b^{3}}\right)^{\frac{1}{3}} \times\left(\frac{b^{2}}{a^{3}}\right)^{\frac{1}{2}}=a^{\frac{2}{3}} b^{-1} \times b a^{-\frac{3}{2}}=a^{\frac{2}{3}-\frac{3}{2}}=a^{-\frac{5}{6}}
$$

